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Abstract. Numerous methods have been proposed to detect, estimate,
and analyze properties of people in images, including the estimation of
3D pose, shape, contact, human-object interaction, emotion, and more.
Each of these methods works in isolation instead of synergistically. Here
we address this problem and build a language-driven human understand-
ing system – ChatHuman, which combines and integrates the skills of
many different methods. To do so, we finetune a Large Language Model
(LLM) to select and use a wide variety of existing tools in response to
user inputs. In doing so, ChatHuman is able to combine information
from multiple tools to solve problems more accurately than the individ-
ual tools themselves and to leverage tool output to improve its ability to
reason about humans. The novel features of ChatHuman include leverag-
ing academic publications to guide the application of 3D human-related
tools, employing a retrieval-augmented generation model to generate in-
context-learning examples for handling new tools, and discriminating and
integrating tool results to enhance 3D human understanding. Our exper-
iments show that ChatHuman outperforms existing models in both tool
selection accuracy and performance across multiple 3D human-related
tasks. ChatHuman is a step towards consolidating diverse methods for
human analysis into a single, powerful, system for 3D human reasoning.

1 Introduction

Humans are distinguished from other animals by their extensive creation and use
of tools. We exploit tools to solve specialized tasks and integrate these solutions
into our general understanding of the world. Recent work on Large Language
Models (LLMs) has shown that such models can also learn to use tools to extend
their skills. Inspired by this, we develop ChatHuman, a multi-modal LLM that
is specialized for understanding humans and their 3D behavior. ChatHuman
learns to exploit a wide range of specialized human-related models for tasks
such as 3D pose estimation, emotion recognition, reasoning about contact, and
more. We introduce novel training methods and show that ChatHuman is able to
navigate and exploit multiple tools to achieve state-of-the-art results on various
tasks regarding 3D human understanding. The power of ChatHuman makes a
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are 0.91 m, 0.71 m, and 0.97 m.

Sure.

Her clothes size would be Middle or
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Please recommend a clothes size for her.
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Fig. 1: ChatHuman is a novel system that uses a multimodal LLM to exploit tools,
discriminate their results, and integrate the results to solve tasks focused on 3D humans.

step closer towards a foundation model for holistic human understanding with
applications in domains like AR/VR [25,64], games [25,57], and fashion [13,65].

Research on 3D humans has progressed rapidly in recent years, resulting in
the creation of many tools that can perform tasks like estimating a human’s
3D pose from a single image [15, 21, 23, 29], predicting face/body shapes [5,
11], capturing emotions [6, 11], and identifying regions of touch/contact [40,
60]. Each of these tools, however, focuses on a specific problem; that is, they
are all “specialists”. Moreover, each of these separate tools cannot benefit from
the expertise of the others. Combining these tools to solve more complex tasks
requires significant domain expertise. To address complex, real-world, tasks, we
would like a “generalist” model that can solve a wide range of problems with
equal or better accuracy than the specialists. Such a system should be able to
use a wide range of specialist tools, know how to apply them to appropriate tasks,
and be able to synthesize the results of several tools to solve new problems. For
example, reasoning-based pose estimation (Figure 1) can be addressed through
the combination of text-guided detection (LLaVA [32]), cropping, and human
pose estimation tools (HMR2 [15]), rather than relying on a single tool alone.

ChatHuman provides one of the earliest solutions to this problem by finetun-
ing a LLM to serve as an agent to call the appropriate tools in response to user
inputs, thereby completing real-world tasks and enhancing its responses to users
with the results from the tools. Sharing a similar spirit, some recent approaches
have utilized off-the-shelf or finetuned LLMs to solve basic vision problems (e.g.,
Visual ChatGPT [49]), to combine mobile applications (e.g., AppAgent [69]),
and to understand complex visual inputs (e.g., GPT4Tools [68]). In contrast to
these works, we focus on the challenging task of 3D human understanding. This
is challenging because there are many disparate tools for analyzing different as-
pects of humans in images. Our model has to select the appropriate tool, for a
given user query, use the tool correctly, and combine the output with its broader
knowledge to respond to the user. The tools themselves produce a variety of
output formats including images, text, and 3D parametric meshes.

We draw inspiration from how humans use tools: 1) we read related papers
to understand the tools, which helps us know when and how to use them; 2)
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after using the tool, we evaluate whether the outcome is reliable, or compare the
results of several methods to determine which is most trustworthy; and 3) we
then incorporate these results to form our response. We apply the same steps to
our LLM-based model, resulting in a novel approach with several contributions:

Paper-based Retrieval-Augmented Tool Usage: Details of a model are
described in a research paper. We give the LLM access to various parts of these
papers and show that “reading the paper” improves tool use performance. Fur-
thermore, we analyze which sections of the paper are most valuable for instruct-
ing tool use. Additionally, when encountering a tool for the first time, people
often turn to the user guide for assistance. We compile documentation for these
tools and utilize a paper-based Retrieval-Augmented Generation (RAG) mecha-
nism to improve LLM’s understanding and management of new tools. This means
that although the LLM has not encountered such tools during fine-tuning, it can
still effectively use the tools with the aid of the paper-based RAG model.

Tool Result Discrimination and Integration: After using the tools, an-
alyzing the outcomes is crucial. In scenarios with various outcomes, the LLM
should discern the most reliable result. Inspired by Cognitive Load Theory [56],
which posits that choosing from options is faster and demands less cognitive ef-
fort than creating detailed explanations, we’ve designed a method to streamline
the LLM’s decision-making process. We present the results from various tools as
multiple-choice questions, making it easier for the LLM to evaluate and select the
best outcome, thus enhancing the tool’s output. These results, combined with
the LLM’s general knowledge, are used to generate responses about 3D humans.
Specifically, ChatHuman consists of a multi-modal LLM, and 22 human-related
tools. The LLM is finetuned for tasks that involve using these tools and incorpo-
rating their results. User requests can be in the form of text descriptions, images
or other 3D information (if applicable), and the model produces text descrip-
tions, images, or other 3D outputs after tool reasoning. Extensive evaluations
demonstrate that ChatHuman not only surpasses previous models in tool usage
accuracy but also enhances performance on a variety of human-related tasks.

To summarize, our key contributions include: (1) a new framework that lever-
ages LLMs to address tasks related to 3D human understanding with human-
centric tools; (2) a scientific-paper-based RAG mechanism, which ensures precise
tool usage by comprehending tool descriptions from scholarly articles, enhanc-
ing tool application and contextual understanding; and (3) the integration of
tool outcomes with LLMs, where the LLM is finetuned to discriminate between
good and bad tool results to provide more accurate results than any single tool.
ChatHuman achieves superior performance in tool usage and human-related
tasks compared to other LLM-based methods or task-specific work. We will
make available the code, trained models, and datasets for research purposes.

2 Related work
3D Humans: There is an extensive literature on the analysis of 3D humans,
which we only sample here. Reasoning about 3D humans typically leverages
parametric models like SMPL [36], SMPLX [43], or GHUM [66] for the body,
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BFM [19] or FLAME [28] for faces, and MANO [51] for hands. These models en-
able the representation of the human body, face, and hands as low-dimensional
vectors, facilitating subsequent applications in estimation and generation. Es-
timation of human pose and shape either relies on optimization-based meth-
ods [2, 20] or regression-based methods [15, 21, 23, 27, 29, 71], which estimate
SMPL shape and pose parameters from a single image. Similarly, face recon-
struction methods [9, 11, 58] estimate shape and expression parameters of the
face model from single images. The analysis of contact, vital for understanding
human-environment interaction and social properties, has seen innovations in
methods [16, 40, 60]. In the generation domain, PoseScript [7] and PoseFix [8]
offer methods for synthesizing and correcting 3D human poses from text de-
scriptions. Recent language-to-3D generation methods [3, 17] create 3D human
shapes. For understanding, there are studies focusing on classifying action labels
in video sequences [42,47] or recognizing human emotions [6,62], enhancing our
comprehension of human behavior. These basic methods excel in their respec-
tive scenarios. Recently, ChatPose [12] unifies pose generation, estimation, and
LLM’s general understanding into one model, but is still limited in full-body
pose tasks. In contrast, our model leverages and integrates the performance of
22 3D human-related tasks into a single, LLM-based model. We emphasize the
significance of ChatHuman, as it enables non-experts to solve real-world tasks
by invoking appropriate tools and adding an extra layer of language-driven un-
derstanding that effectively leverages the output of different tools.
Large Language Models and Tool Use: To expand the capabilities of LLMs
without expensive retraining, recent work has focused on enabling them to use
specialized off-the-shelf tools. In this line of work, a library of tools is constructed
and LLMs act as the planner to navigate the use of the tools. Differnt types of
tools have been adopted, e.g., vision modules [49,55,70], mobile applications [69],
community tools [52] and system tools [68]. However, general-purpose LLMs
often lack a deep understanding of specific tools, especially those containing
domain knowledge. To address this, a few recent works [10, 24, 63] propose to
fintune general-purpose LLMs (e.g., LLaMA [59], LLaVA [33,34]) with domain-
specific tool use data. Distinct from previous works, ChatHuman focuses on
understanding 3D humans through language interaction by leveraging the power
of off-the-shelf human-related tools.
Retrieval Augmented Generation: RAG [14,26,72] is a technique to enhance
generative tasks by retrieving relevant information from external databases, al-
lowing for continuous knowledge updates. Based on this feature, we design a
RAG mechanism to facilitate the usage of newly introduced, unseen tools.

3 Language-driven 3D Human Understanding

The goal of ChatHuman is to leverage the capabilities of LLMs for tasks re-
garding 3D human understanding. The model is designed to interact with users
and deal with various user requests through input like text, image, or any in-
formation about 3D humans. This includes details on how a person is posed
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Fig. 2: Method Overview. Given a user query, the multimodal LLM-based agent adopts
a paper-based RAG mechanism to determine whether to employ tools and identify the
optimal way to utilize them. After applying the tools, the tool results are transformed
into a text or visual format and fed back to the agent to formulate responses.

(using SMPL [36] pose parameters), their emotions (using FLAME [28] expres-
sions),and how they touch or interact with the environment (contact), etc. Fig-
ure 2 gives an overview of the proposed ChatHuman model. We start by elaborat-
ing the architecture design and the detailed training process (Section 3.1). This
includes the introduction of the paper-based retrieval-augmented generation for
accurate tool usage (Section 3.2) and a feedback mechanism aimed at enhanc-
ing the LLM’s responses to human-related questions (Section 3.3). Finally, we
provide the details of our training data construction by employing GPT-4V [41]
with a range of datasets associated with different tools.

3.1 Overall Pipeline

We refer to our ChatHuman model as Φ, which consists of a multi-modal LLM
fϕ(·), along with a set of 3D human-related functions fθ1(·), fθ2(·), .... These
functions serve as tools for various tasks, such as 3D human pose estimation, pose
generation, and 3D face reconstruction. Our model takes input text queries Xq,
images Xv, or Xm representing other 3D human-related modalities. For instance,
Xm could represent 3D human poses encoded as SMPL parameters. Then it
produces outputs in the form of text Yt, images Yv, or modalities Ym related to
3D humans, as described by Yt, Yv, Ym = Φ(Xq, Xv, Xm). For training, we keep
all the tool functions fixed, and only finetune the LLM fϕ(·). Specifically, we use
LoRA [18] to finetune the LLM, where the trainable parameters are denoted as
ϕlora. With the ground truth textual output Ŷt, we optimize the model using
the following objective function: L = CE(Ŷt, Yt), where CE denotes the cross-
entropy loss. In the following sections, we introduce the details of the model
function Φ and the construction of our training data.

3.2 Paper-based Retrieval-Augmented Tool Reasoning

Teaching LLMs to accurately discern when and how to utilize tools presents
a significant challenge. A straightforward approach [49, 68] might involve sum-
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marizing the usage scenarios and input arguments of each tool within the input
prompt of the LLM fϕ(·), formulated as Ytool = fϕ(Xq, Xt), where Xt represents
the tool definitions. But this often falls short for specialized tools, particularly
when there exist numerous professional tools related to 3D human tasks. Firstly,
some tools have various usage scenarios and require background knowledge for
proper utilization. For instance, for HMR tool [15], relevant inquiries might in-
clude “Can you estimate the pose of this person?”, “What are the SMPL param-
eters?”, or “I want to get the 3D mesh of this person.” It is difficult to concisely
summarize all potential application scenarios and requisite background knowl-
edge in a few sentences within the prompt. Furthermore, as the number of tools
grows, the descriptions of these tools in the prompt get longer and more com-
plex. This makes it harder for the LLM to use different tools, especially new
ones for which it was not trained.

To solve these problems, we introduce a paper-based Retrieval-augmented
Generation (RAG) mechanism to facilitate tool usage. As illustrated in Figure
3, we first input the academic papers associated with each tool to GPT-4 and
prompt it to rearticulate the tool functions and enumerate potential user queries
for tool activation. Academic papers, with their extensive background, detailed
instructions, and varied applications, enable the generation of user queries cov-
ering a wide range of application scenarios. By combining these queries with
the structured arguments of each tool, we compile a document consisting of
question-answering pairs about tool operation for each tool. Figure 3 presents
one example from the tool document. These documents Xd serve as an auxiliary
knowledge base during inference, from which we retrieve a relevant example Xe

in response to a user query Xq. The retrieval process is implemented by matching
the text embedding of the query and those within the tool documents using a
pretrained text embedding model [54]. The retrieved sample is then merged with
the user query and provided to the agent fϕ as an in-context learning example,

Xe = fr(Xq, Xd), Ytool = fϕ(Xq, Xe, Xt), (1)

where fr represents the retrieval function and Ytool is a textual description spec-
ifying whether to use a tool or not, tool names, and input arguments for tool
function calling. This textual description, alongside the text query, vision, or in-
puts from other modalities, enables the tool function fθ to compute the results,
which is denoted by Ym = fθ(Ytool, Xq, Xv, Xm).

3.3 Tool Result Discrimination and Integration

After using the tools, it’s important to integrate the outcomes to solve problems.
However, outputs from various tools come in different forms (e.g., language,
images, vectors like SMPL poses), some of which might be difficult for current
multimodal LLMs to understand, e.g. LLaVA [32] only accepts text and image
as input. To leverage these results and enhance the LLMs’ understanding of
3D humans, we introduce a tool-conditioned transformation Ψ(·) that converts
tool outcomes Ym into textual or visual formats. For example, we transform
the vertex-wise contact label predicted by DECO [60] into a body part-level
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Fig. 3: Paper-based Retrieval-Augmented Tool Usage. We first feed the academic papers
of each tool to GPT-4 and build a document for each tool. During inference, given a
user query, a relevant sample is retrieved from the documents and provided to the
LLM-based agent as an in-context example to improve the tool usage accuracy.

description based on the vertex-to-part mapping dictionary of SMPL [36], and we
render the mesh generated by PoseScipt [7] into an RGB image using rendering
techniques. After that, the transformed results will be merged with the user
query as a clue to help the agent generate a response:

Yt = fϕ(Xq, Y
′

t , Y
′

v ), (Y
′

t , Y
′

v ) = Ψ(Ym). (2)

In scenarios where multiple tools can address a user’s request, leading to
various potential outcomes, we aim for the LLM to identify the most accurate
result. To achieve this, we present the outcomes as multiple-choice questions,
prompting the model to select the most relevant answer to the user query:

(Y ′
t , Y

′
v) = fϕ(Xd, Ψ(Ym1), Ψ(Ym2), ...), (3)

where Ymi denotes the i-th tool result, Xd is a prompt specifying the discrimi-
nation rule. Details of the prompt are available in Appendix.

3.4 Training Data Construction

Tool Usage Instruction-following Data. Given a user query, the LLM-based
agent aims to select appropriate tools and formulate the arguments for their op-
eration. Following GPT4Tools [68], we provide GPT-4 [41] with an image content
XI and a tool-related prompt PT to compile the instruction-following data (see
Figure 4(a)). The image content XI consists of a textual description of an image,
detailing captions and object locations. The tool-related prompt includes a sys-
tem message, and a description of tools delineated as "<tool name>: <usage
scenario>, <arguments>". As proposed in Section 3.2, we further incorpo-
rate the paper content XP into GPT-4 to generate the tool usage instruction-
following data IT , formulated as IT ∼ fg(PT |XI , XP ), where fg(·) denotes the
GPT-4 model. IT is a question-answering data pair consisting of a user query
Xq and a response Ŷt specifying whether to use a tool Ŷthought, the tool name
Ŷact, and the tool input arguments Ŷargs.
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Image Content Tool Results Human GT Labels

(a) Tool Usage Instructions
System Prompt. 
Human: 
Prefix Prompt. 
Human: Provide an image named <image path> 
Description: <image caption>
AI: Received. 
Example: <retrieved example>
New input: <user input>
Suffix Prompt. 
Assistant: 
Thought: Do I need to use a tool? Yes 
Action: <tool name>
Action Input: <arguments>
Observation: <tool output>

caption: A catcher squatting at
a base with his gloved hand
extended.

person: [0.34, 0.19, 0.76, 0.93]
baseball: [0.61, 0.50, 0.76, 0.66]

HOI RegionsBody Shape Human Pose

Height 178

Weight 75

Waist 99

Hips 101

Chest 90

HOI RegionsBody Shape Human Pose

Height 128

Weight 30

Waist 58

Hips 65

Chest 60

(c) Tool Feedback Integration Instructions

System Prompt. 
Human: <Instruction>  <Tool result>
Assistant: <Response>

System Prompt.
Human: Describe the HOI contact regions
of the man in the image. The contact
regions detected by tools are: left foot,
right foot, left hand, right hand.
Assistant: His right hand is in contact with
the handle of a cooking tool, while his left
hand is in contact with a bottle. His left and
right feet are in contact with the ground.

Image

(b) Tool Feedback Discrimination Instructions

System Prompt. 
Human: <Instruction> 
<Discrimination Rule>  <Tool result>
Assistant: <Response>

Image System Prompt.
Human:  Please compare the pose
estimation results of Tool A (blue
mesh) and Tool B (red mesh). Assess
which one of the two meshes more
accurately replicates the pose and
shape of the human figure in the
original image, taking into account
their alignment and resemblance.
Assistant: Tool B’s result is better.

Tool Description Tool Papers

…

<tool name>: 
<usage scenario>, <arguments>

DECA HMR 2.0 HAMER

SMPL

…
DECO

DECA PoseSciptHMR 2.0

DECO HAMER

GPT-4VGPT-4

Fig. 4: Illustration of data construction. We construct instruct-following data about
tool usage and feedback by providing GPT-4 with multiple tool-related information,
image content, and ground truth labels. Gray text shows example of the instruction.

Tool Feedback Instruction-following Data. After calling the tools, the
LLM-based agent should be able to discriminate and integrate the tools’ out-
comes. To achieve this, we construct instruction-following data based on the
tool results and corresponding ground truth labels. Specifically, we transform
the tool results and ground truth human labels into textual or visual formats
using specialized techniques or rendering tools. Subsequently, we feed GPT-4V
with the image content XI , the transformed tool feedback XT , and the ground
truth label XL to generate the instruction-following data about tool feedback,
denoted as IF ∼ fg(PF |XI , XT , XL), where PF is a system prompt, IF consists
of an instruction Xq and a corresponding answer Ŷ ′

t . We instruct GPT-4V to
curate two types of data. The first as illustrated in Figure 4(b), is about iden-
tifying the most suitable tool response. The second (Figure 4(c)) focuses on the
integration of tool results, featuring a query posed by a user, the tool’s output
serving as a hint, and the assistant’s reply.

Multi-Modal Instruction-following Data. To preserve the LLM’s inher-
ent capability for multi-turn conversations, we also incorporate the multi-modal
instruction-following data IM from LLaVA [32] during training.

Finally, We consolidate the tool usage instruction-following data IT , tool
feedback instruction-following data IF , and multi-modal instruction-following
data IM into a unified format consistent with LLaVA [32]:

Human : Xinstruct<STOP> Assistant : Yt<STOP>, (4)

where <STOP> is sequence termination token and Xinstruct is input instruction.
We set Xinstruct as Xq for a language-only instruction, and as Xq <\n> Xv for
a multimodal instruction that incorporates both text and visual elements.
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Seen Tools Unseen Tools

Method SRt SRact SRargs SR IoU SRt SRact SRargs SR IoU

GPT4Tools [67] 0.609 0.547 0.525 0.520 0.566 0.612 0.546 0.542 0.525 0.573

GPT4Tools-FT [67] 0.825 0.710 0.687 0.690 0.741 0.904 0.807 0.690 0.747 0.800

Visual ChatGPT-3.5 [49] 0.498 0.319 0.237 0.251 0.791 0.507 0.314 0.226 0.293 0.803

Visual ChatGPT-4 [49] 0.892 0.802 0.715 0.753 0.797 0.998 0.913 0.801 0.872 0.907

ChatHuman 1.000 0.974 0.950 0.970 0.975 0.999 0.967 0.893 0.954 0.953

Table 1: Comparison of tool usage accuracy. Successful rate of thought (SRt), action
(SRact), arguments (SRargs), execution (SR), and IoU are reported.

4 Experiments and Results

4.1 Implementation Details

We employ LLaVA-1.5V [32] as the multimodal LLM backbone, with CLIP [46]
for vision encoding and Vicuna [4] for the LLM backbone. For retrieval, we
adopt INSTRUCTOR [54] for text embedding and utilize the vector similarity
searching algorithm from Chroma to identify a relevant example. To preserve the
generalization ability of the pre-trained multi-modal LLM, we leverage LoRA
[18] to perform efficient fine-tuning, with a rank of 128 and an alpha of 256.
Alternatively, orthogonal finetuning [35,45] can be used to improve performance.
For optimization, we use AdamW [37], with a learning rate and weight decay
set to 2e-4 and 0, respectively. All models are fine-tuned over 2 epochs with a
mixture of tool usage, tool feedback, and LLaVA multimodal instruction-tuning
data. During the training phase, we use 8 Nvidia 80G A100 GPUs and use
the DeepSpeed [48] engine to enhance the training efficiency. Unless otherwise
specified, we used LLaVA-1.5V-7B as the base model for the ablation study.

4.2 Datasets

Tool Usage Instruction-Tuning Data. To teach the agent to correctly use
tools, we construct 90K instruction-response pairs about tool usage. Our tool
library consists of 22 human-related tools: 8 for perception, 7 for reasoning, and
7 for generation. We further construct a validation and test set for evaluation.
The validation set has 1000 samples with the same tools as the training set, while
the test set includes 689 samples related to 3 tools not presented during training.
To ensure the difference between the training and test sets, we use varied image
caption sources for input prompts. More details are provided in the Appendix.

Tool Feedback Instruction-Tuning Data. To help the multimodal LLM
model discriminate and integrate the tool results, we construct 88K instruction-
following data based on existing 3D human datasets, including 61K tool result
discrimination instructions built with MoYo [61], 3DPW [38], and PoseScript [7],
and 27K tool result integration instructions from SHAPY [5] and DECO [60].

LangChain/Chroma

https://python.langchain.com/docs/integrations/vectorstores/chroma
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The man in the blue shirt is running. He 
appears to be heading to the other side of the 
street, running at a fast pace, with his hair 
flying. Please help me help his SMPL pose. 

ChatPose ChatHuman HMR 2.0Target

The man in the dark blue shirt is preparing to 
sit down. He is looking down at the step's 
surface, bending his hands and lifting one leg, 
getting ready to take a seat.

ChatPose ChatHuman HMR 2.0Target

Fig. 5: Qualitative comparison with ChatPose [12], HMR 2.0 [15] for reasoning-based
human pose estimation on SPG [12] benchmark.

4.3 Evaluation on Tools Usage

We compare our method with Visual ChatGPT [49] and GPT4Tools [67] on the
proposed evaluation set and report 5 metrics proposed in GPT4Tools [67]. Please
refer to Appendix for details of the metrics. For Visual ChatGPT, we experi-
ment with two versions of GPT: “gpt-3.5-turbo-1106” and “gpt-4-turbo-preview”.
Regarding GPT4Tools, we adopt the official pretrained 13B model. For a fair
comparison, we also finetune GPT4Tools with our training data using the offi-
cial training code and obtain a variant, GPT4Tools-FT. Table 1 shows that the
original GPT4Tools does not perform well in our benchmark due to differences
between the common visual tools in GPT4Tools and our human-centric tools.
Visual ChatGPT-4 exhibits impressive tool usage accuracy, showing its powerful
zero-shot ability to follow a standardized format and use tools accurately. Our
ChatHuman consistently outperforms the competitors, particularly with tools
not seen in training, thanks to our paper-based RAG mechanism.

4.4 Evaluation on 3D Human Understanding

In the following, we evaluate the performance of ChatHuman on four represen-
tative human-related tasks and report the performance on six benchmarks.
Pose Estimation. Following ChatPose [12], we evaluate the performance of our
method in both classical and reasoning-based pose estimation tasks. MPJPE,
PA-MPJPE, and MPJRE on the 3DPW [38] and RPE [12] benchmarks are re-
ported. For the reasoning-based pose estimation task, ChatHuman first grounds
a human based on a textual description and feeds it into the pose estimation
tool to get the result. As shown in Table 2, ChatHuman achieves compara-
ble performance to the task-specific models on the classical pose estimation
task. For reasoning-based human pose estimation, which involves both reasoning
ability and advanced human pose estimation ability, ChatHuman outperforms
both task-specific and multi-modal LLM methods by a large margin (34.6% ↓ in
MPVPE). As shown in Figure 5, only our method achieves a satisfactory result.
The multimodal LLM competitor ChatPose could find the correct person but
fails to obtain an accurate pose due to the limited perception ability, while the
task-specific tool could not match the correct person due to the lack of reason-
ing ability. This demonstrates the advantages of ChatHuman, which combines
task-specific tool use expertise with the general reasoning ability of an LLM.
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3DPW [38] RPE Benchmark [12]
Method MPJPE ↓ PA-MPJPE ↓ MPJRE ↓ MPJPE ↓ PA-MPJPE ↓ MPJRE ↓
SPIN [23] 102.9 62.9 10.1 244.9 107.3 12.4
HMR 2.0 [15] 91.0 58.4 9.2 225.2 105.1 12.1
LLaVA-S [32] 440.8 205.4 21.8 490.7 207.4 21.1
LLaVA*-S [32] 232.1 101.1 12.8 - - -
GPT4-S [41] 322.0 136.7 16.0 - - -
LLaVA-P [32] 335.2 172.3 16.5 391.5 191.9 17.8
GPT4-P [41] 396.5 203.4 18.6 - - -
ChatPose [12] 163.6 81.9 10.4 253.6 103.8 11.7
ChatHuman 91.3 58.7 9.2 147.2 79.1 10.3

Table 2: Comparison of vanilla human pose estimation and reasoning-based pose esti-
mation on 3DPW [38] and RPE [12] benchmarks. LLaVA* is fine-tuned with human
keypoints data. “S” uses multimodal LLMs for keypoint detection and SMPLify [2] for
pose optimization. “P” utilizes multimodal LLMs for textual pose descriptions, pro-
cessed by PoseScript [7] to generate poses. MPJPE (in mm), MP-MPJPE (in mm),
and MPJRE (×100) are reported.

PoseScript [7] SPG Benchmark [12]
Method RP2T ↑ RT2P ↑ RP2T ↑ RT2P ↑
PoseScript [7] 40.4 52.3 65.0 41.4 54.1 65.9 1.5 3.5 6.2 1.4 2.3 5.1
ChatPose [12] 17.6 25.3 35.8 28.0 39.0 54.4 3.3 5.5 8.2 3.5 5.8 11.0
LLaVA-P [32] - - - - - - 2.1 4.0 7.1 2.1 3.3 6.1
GPT4-P [41] - - - - - - 2.7 4.7 9.2 2.7 5.3 8.2
ChatHuman 41.8 52.6 65.1 42.1 52.3 66.5 3.2 5.0 9.9 3.5 6.5 10.6

Table 3: Comparison of classical and speculative pose generation on PoseScript [7]
and SPG [12] benchmarks. “P” utilizes LLMs for textual pose descriptions rephrase,
processed by PoseScript [7] to generate poses. Top 5,10,20 recall rates are reported.

Pose Generation. Here we evaluate the pose generation capability of ChatHuman
on the classical text-to-pose generation task and the speculative pose generation
task (SPG) [12]. Following previous work [7,12], we report the text-to-pose recall
rate RT2P and pose-to-text recall rate RP2T of the retrieval models trained on
real poses and evaluated on generated poses. For the SPG task, ChatHuman
first rephrases the indirect pose descriptions into explicit ones and adopts Pos-
eScript (journal version) [7] to generate a pose. As shown in Table 3, our method
archives comparable performance to the SOTA methods on both benchmarks.
In contrast, the previous LLM-based method, ChatPose, performances poorly
on the classical pose generation benchmark, while the task-specific model Pos-
eScript lags in the SPG benchmark due to limited reasoning ability.

Body Shape Measurement. Here we evaluate the body shape measurement
accuracy of ChatHuman. We randomly sample 100 images from the HBW val-
idation set [5] and compare our method with a multimodal LLM, LLaVA [32],
and a SOTA body shape estimation method, CLIFF-BEDLAM [1]. For LLaVA
and ChatHuman, we ask them the same question to inquire about the height,
weight, chest, waist, and hip circumferences of a person in the image and then
prompt GPT-3.5 to extract the value from the model output. The details of the
question and prompt are available in Appendix. CLIFF-BEDLAM predicts the
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Method Height ↓ Weight ↓ Chest ↓ Waist ↓ Hip ↓
LLaVA [32] 6.7 10.1 16.5 22.9 17.6
CLIFF-BEDLAM [1] 7.8 13.9 8.6 13.5 7.0
ChatHuman 6.7 10.4 6.1 13.0 6.4

Table 4: Comparison of body shape measure-
ment. Measurement errors (in cm and kg) on
HBW validation set [5] are reported.

Method Precision ↑ Recall ↑ F1 Score ↑
LLaVA [32] 0.26 0.81 0.39
GPT-4 [41] 0.61 0.48 0.49
ChatHuman 0.67 0.67 0.63

Table 5: Comparison of HOI under-
standing. Precision, Recall Rate, and
F1 Score on DECO [60] are reported.

Seen Tools Unseen Tools
Paper RAG SRt SRact SRargs SR IoU SRt SRact SRargs SR IoU

× × 0.998 0.967 0.928 0.960 0.964 0.946 0.894 0.775 0.822 0.872
× ✓ 1.000 0.967 0.928 0.961 0.965 0.996 0.945 0.842 0.891 0.927
✓ ✓ 1.000 0.974 0.950 0.970 0.975 0.999 0.967 0.893 0.954 0.953

Table 6: Ablation study of paper-based RAG mechanism. Successful rate of thought
(SRt), action (SRact), arguments (SRargs), execution (SR), and IoU are reported.

body shape parameter, which is then converted to measurements based on the
shape-to-measurement function from SHAPY [5]. Anthropometric measurement
errors are reported in Table 4. As shown, ChatHuman achieves superior perfor-
mance in most measurements, outperforming the multimodal LLM competitor
LLaVA by 42% and CLIFF-BEDLAM by 15.7% in average metrology accuracy.
Human-Object Interaction. Here we evaluate the human-object interaction
understanding ability of ChatHuman on the DECO [60] test set. The textual
ground truth (GT) labels are obtained by converting the vertex-level contact
labels into body part-level contact labels with the vertex-to-part mapping dic-
tionary of SMPL. Given a human image, we ask the multimodal LLM to detect
the body parts that contact with objects and prompt GPT-3.5 to extract the
body part labels from the answer. Subsequently, we compare the predicted body
parts with the GT body part label and compute the average detection precision,
recall rate, and F1 Score. From Table 5, ChatHuman achieves SOTA performance
in the precision and F1 score metrics, demonstrating the superior human-object
interaction understanding ability of our method. Notably, although LLaVA has
a high recall rate, its precision and F1 score are rather poor, which means that
it tends to predict all the body parts to be in contact with objects.

4.5 Ablation Study

Paper-based RAG Mechanism. To improve tool use accuracy, we design a
paper-based RAG mechanism. Here we perform a break-down ablation to inves-
tigate the effect of each component and their interactions. The baseline model
is derived by removing the RAG operation and is trained with the instruction-
following data constructed without referring to paper content. The results are
listed in Table 6. The baseline model’s success rate (SR) is 0.96 for seen tools
and 0.82 for unseen tools. Adding RAG increases the SR for unseen tools to
0.89, demonstrating its effectiveness in zero-shot settings. Further incorporating
scholarly articles into training data boosts the performance: the successful rate
of arguments (SRargs) rises from 0.93 to 0.95 for the seen tools and 0.84 to 0.94
for the unseen tools. This suggests the use of scholarly articles can help construct
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Method Precision ↑ Recall ↑ F1 Score ↑
w/o Tool 0.26 0.81 0.39
w/ Tool 0.67 0.67 0.63

(a) HOI Contact Detection.

Method Height ↓ Weight ↓ Chest ↓ Waist ↓ Hip ↓
w/o Tool 6.7 10.1 16.5 22.9 17.6
w/ Tool 6.7 10.4 6.1 13.0 6.4

(b) Body Shape Measurement.
Table 7: Ablation study about how can tools improve human understanding on human-
object contact detection and body shape measurement tasks.

Method MPJPE ↓ PA-MPJPE ↓ PA-MPVPE ↓
Tool A 126.2 81.4 101.9
Tool B 124.0 84.6 104.7
ChatHuman 119.6 78.2 98.3

(a) Mesh Error (in mm) on MixPose.

Method Height ↓ Weight ↓ Chest ↓ Waist ↓ Hip ↓
Tool [1] 7.8 13.9 8.6 13.5 7.0
ChatHuman 6.7 10.4 6.1 13.0 6.4

(b) Body Shape Measurement Error (in cm
or kg) on HBW [5] Validation Set.

Table 8: Study revealing how tool use improves human understanding on pose estima-
tion and body shape measurement tasks.

high-quality instruction-following data and tool documents, stemming from the
detailed usage instructions and diverse application scenarios within the paper.
We further analyze the effects of each component of the paper for instructing
tool usage, please see Appendix for details.

Tool Result Integration and Discrimination. We first conduct an abla-
tion to study how can the tools enhance the human understanding capacity of
multimodal LLM. The model without tools is our multimodal LLM backbone,
LLaVA-1.5-7B [32], and the model with tools is our ChatHuman. The quanti-
tative results are listed in Table 7. When equipped with tools, the HOI contact
detection F1 score increases from 0.39 to 0.63 and the averaged body shape mea-
surement error declines by 38%. These results demonstrate the effectiveness of
tools in enriching the LLM’s comprehension of human models and behaviors.

Additionally, we study whether the multimodal LLM-based agent can uti-
lize its world knowledge to discriminate and improve the tool performance. We
design two discrimination schemes, i.e., selection and modification, and conduct
an ablation study on two human-related tasks by comparing ChatHuman with
the SOTA task-specific tools. For the selection scheme, we experiment with the
pose estimation task and select two SOTA methods, HMR 2.0 [15] and CLIFF-
SMPLify [2, 29], as our tools to generate two poses of each person. We then
prompt the LLM-based agent to discriminate the results and choose the better
one as the final response. Different tools excel in different scenarios and to cover
more diverse human poses and camera views, we build a new benchmark Mix-
Pose by selecting 100 images with extreme camera views from the MoYo [61] test
set, 100 full-body samples and 100 severely-truncated samples from 3DPW [38]
test set. Details of the prompt and MixPose benchmark are in Appendix. As
shown in Table 8(a), ChatHuman archives a lower reconstruction error on the
MixPose benchmark, validating the effectiveness of the agent as a discriminator
to improve the tool performance. For the modification scheme, we validate on
the body shape measurement task. We use CLIFF-BEDLAM [1] as the tool and
prompt the agent to discriminate and modify the tool result. The result is re-
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What are the height, chest, hip, 
waist circumferences (in 
meter), and weight (in kg) of 
the person in the image?

Height: 1.69 m                                                                                                               
Chest: 0.91 m
Hip: 1.0 m
Waist: 0.75 m
Weight: 59.9 kg

The woman is about 1.68 m tall, with 
a chest circumference of 0.90 m, 
a hip circumference of 0.93 m,
a waist circumference of 0.78 m,
weighs approximately 69 kg

Height: 1.44 m                                                                                                                            
Chest: 0.83 m
Hip: 0.91 m
Waist: 0.7 m
Weight: 45.5 kg

ToolChatHuman GT Label 

What are the height, chest, 
hip, waist circumferences (in 
meter), and weight (in kg) 
of the person in the image?

Height: 1.83 m                                                                                                               
Chest: 1.06 m
Hip: 1.02 m
Waist: 1.07 m
Weight: 91.7 kg

The man is 1.88 m tall, with a 
chest circumference of 1.02 m, a 
waist circumference of 0.97 m, and 
hips circumference of 0.88 m. He 
weighs approximately 80.4 kg

Height: 1.79 m                                                                                                               
Chest: 1.02 m
Hip: 0.97 m
Waist: 0.88 m
Weight: 75.6 kg

ToolChatHuman GT Label 

(a) Tool generates unreasonable output (b) Tool generates reasonable output

Fig. 6: Illustration about how the multimodal LLM-based agent discriminates and in-
tegrate tool results. The Agent will fix the unreasonable tool result and integrate the
reasonable tool result to generate a final response.

This is my image, could you
please help me reconstruct
an avatar character for me.

No, I want to use it as my 
facebook head portrait, please 
reconstruct a facial avatar.

What's the height and
weight of the man?

The man is about 1.76 meters tall and 
weighs approximately 71.28 kilograms.

Considering he is a basketball
player, could you please estimate
his height and weight again?

Given that he is a basketball player, his 
height is about 1.88 m and his weight is 
about 80.38 kg.

What's the height and weight
of the person in the image?

The woman appears to be tall, with a height 
of about 1.82 m, and she weighs 63.2 kg.

Considering that she is wearing a 
high heel, what's her barefoot 
height and weight?

Without the high heel, her height would 
be approximately 1.72 m and her weight 
would be around 61.14 kg.

(a) Ground Truth: 1.96 m tall and weighs 90.7 kg (b) Ground Truth: 1.75 m tall and weighs 60.3 kg

Fig. 7: Human interaction can improve the performance and tool usage accuracy.

ported in Table 8(b) and Figure 6. As shown, the LLM-based agent can improve
the tool performance by utilizing its general world knowledge to discriminate
and fix the unreasonable tool results, e.g., the height and weight in Figure 6(a).

5 Discussion and Concluding Remarks

In conclusion, we introduce ChatHuman, an LLM-based model designed to learn
the use of tools related to 3D humans and assist users in solving tasks associated
with 3D humans. The model processes requests from users, analyzes the needs,
and applies the necessary tools. It then evaluates and synthesizes the tools’
outputs to respond to the user’s queries and address the problems effectively.
Having computers better understand 3D humans has many potential benefits in
healthcare, fitness, human-robot interaction, entertainment, etc. Possible nega-
tive impacts include unwanted surveillance, body shaming, and deep fakes. The
risk-benefit ratio should be monitored and, like other LLMs, guardrails may be
needed to prevent malicous use cases.
Limitations. ChatHuman may fail in certain calling scenarios, particularly
when the user request is vague, and subsequent LLM internal analysis cannot
rectify an incorrect initial function call. However, further interaction with users
can remedy this if they provide additional information. For example, Figure 7
illustrates an instance of using body estimation and face reconstruction tools for
avatar creation. Even with the application and analysis of the tool, outcomes
like height estimation may not be entirely precise. One contributing factor is the
accuracy of the training data; for instance, most height labels in datasets use the
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official height of models or celebrities, which may not account for variations like
shoe height, such as a 7-inch heel. Incorporating mores cues from users, com-
bined with the LLM’s knowledge of the world and reasoning capabilities, can
enhance the accuracy of results, as shown in Figure 7.
Future Work. ChatHuman offers several exciting avenues for future develop-
ment: 1) Integrated Learning and Self-Improving: Merging tool use learning with
user feedback to continuously refine the model’s understanding and approach to
3D human tasks. 2) User Feedback for Enhanced Training: As shown in Figure 7,
user interaction has a tangible impact on improving outcomes. Future work could
explore how ongoing dialogues with users might provide valuable feedback for
refining and expanding the system’s capabilities in 3D human-related research.
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Appendix

A Additional Details

Here we describe in more detail how we train a multimodal LLM to use tools,
discriminate, and integrate tool results to improve its ability to reason about hu-
mans. As mentioned in the main paper, here we provide additional information
about the implementation, training process, evaluation methodology, and abla-
tion study. Due to space limits in the main paper, we provide more qualitative
results here that illustrate the performance of ChatHuman and its limitations.

A.1 Tool Details

We support 24 human-related tools in our tool pockets, including 9 perception
tools, 8 generation tools, and 7 reasoning tools as listed in Table 9.

Perception Reasoning Generation
Body Pose Estimation [15] Selective Person Pose Detection [15,32] Text-to-Pose Generation [7]
Body Shape Measurement [1] Specific Person Shape Measurement [1, 32] Speculative Pose Generation [7, 32]
Hand Pose Estimation [30] Targeted Hand Pose Estimation [30,32] Text-to-Image Generation [50]
Face Reconstruction [11] Described Person Face Reconstruction [11,32] Text-based Pose Editing [8]
Human Segmentation [22] Described Person Segmentation [22,32] Remove Something From The Photo [22,32,50]
HOI Detection [60] Selective Person Contact Estimation [32,60] Replace Something From The Photo [22,32,50]
Pose Description [7] Visual Question Answering [32] Instruct Image Using Text [50]
Image Caption [32] Text-to-Motion Generation [44]
Motion Capture [53]

Table 9: List of tools used in ChatHuman. ChatHuman supports 24 human-related
tools, including 9 perception tools, 8 generation tools, and 7 reasoning tools.

A.2 Evaluation Metric Details

Tool Usage. We use the evaluation metrics proposed in GPT4Tools [68] to
measure the tool usage accuracy, including:

– Successful Rate of Thought (SRt), which measures the decision accuracy,
calculated as SRt = 1

N

∑N
i=1 I(τi), where N is the number of instructions

and τi is a singular process. When the predicted thought is the same as the
ground-truth thought, I(τi) is equal to 1, and 0 otherwise.

– Successful Rate of Action (SRact), which measures the tool name predic-
tion accuracy, calculated as SRact =

1
N

∑N
i=1 I(αi), where αi is the matching

process of the tool name. If the predicted tool name is correct, I(αi) is equal
to 1, and 0 otherwise.

– Successful Rate of Arguments (SRargs), which measures the tool argu-
ments prediction accuracy, calculated as:

SRargs =
1

N

N∑
i=1

ηi, ηi =
1

K

K∑
j=1

ηi,j , (5)

where K is the number of tool arguments. When the argument is a file name,
ηi,j equals 1 if the predicted file name is the same as the ground-truth file
name, and 0 otherwise. When the argument is text, ηi,j equals the BLEU
score between the predicted and groud-truth text.
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Human:  Please compare the pose
estimation results of Tool A (blue
mesh) and Tool B (red mesh). Assess
which one of the two meshes more
accurately replicates the pose and
shape of the human figure in the
original image, taking into account
their alignment and resemblance.
Assistant: Tool B’s result is better.

Human:  Please compare the pose
estimation results of Tool A (blue
mesh) and Tool B (red mesh). Assess
which one of the two meshes more
accurately replicates the pose and
shape of the human figure in the
original image, taking into account
their alignment and resemblance.

Assistant: Tool A.

Fig. 8: Examples of the instruction-following data for discriminating between pose es-
timation results.

– Interaction over Union (IoU), which quantifies the percent overlap be-
tween the predicted text and ground-truth text.

Human Understanding. We use the following evaluation metrics to measure
the performance of ChatHuman in human-related tasks:

– Pose Estimation. We adopt the same evaluation metrics as ChatPose [12]
to evaluate the 3D pose estimation accuracy, including Mean Per-Joint Posi-
tion Error (MPJPE), Mean Per-Joint Position Error after Procrustes align-
ment (PA-MPJPE), and Mean Per-Joint Rotation Error (MPJRE).

– Pose Generation. We use the evaluation metrics established in PoseScript
[7], including the text-to-pose recall rate RP2T and pose-to-text recall rate
RT2P of the retrieval models trained on real poses and evaluated on gen-
erated poses. We use the retrieval model from the jounal-version of Pos-
eScript [7] and ChatPose [12] for the classical pose generation and speculative
pose generation tasks, respectively.

A.3 Training Data Details

Tool Usage Instruction-following Data. To teach the LLM-based agent to
correctly use tools, we construct 90K instruction-response pairs about tool usage.
Following GPT4Tools [68], we provide GPT-4 [41] with a textual description of
an image from the COCO training set [31] and a tool-related prompt containing
a description of tools. One of our key observations is that human-related tools
often come with an academic paper containing rich background knowledge and
varied applications, which are useful for the generation of user queries covering a
wide range of application scenarios. Thus, we also incorporate the paper content
into GPT-4 to generate the tool usage instruction-following data. To improve
efficiency, we first prompt GPT-4 to summarize the paper content, rearticulate
the tool functions and enumerate 50 potential user queries for tool activation.
The details of the prompt are represented in Table 15. The summarized tool de-
scription and user queries will be fed to GPT-4 along with the image description
to generate the instruction-following data about tool usage. Table 16 illustrates
the prompt for the second step.
Tool Feedback Instruction-following Data. To help the multimodal LLM
model discriminate and integrate the tool results, we construct 88K pairs of
instruction-following data based on existing 3D human datasets.
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Human: From the quartet of poses in the
image, select the one that best aligns
with the pose description. Pose
Description: He is balancing on his right
foot with his knee slightly bent. His left
leg is extended out straight in front of
him with his knee slightly bent. Both
arms are elevated about face height with
his left elbow slightly bent. He appears
to be looking upward slightly.
Assistant: Pose B best matches the 
provided pose description.

Human: Please identify the most fitting text description for the pose in
this image.
(A) The person is standing on their left leg with the right leg raised level

with the hip and the knee bent so that the lower leg crosses the
body and the foot is in front of the left leg. The left arm is raised.

(B) They are balancing mainly on their right leg which is bent with their
foot flat but pointed outwards also. Their left leg is fully
outstretched in front of them with half their foot off the ground.

(C) This person is bent over and on all fours as if they are crawling. Both
legs are bent at the knees, with the left foot slightly in front of the
right foot. The arms are extended slightly forward.

(D) This person is standing, slightly bending their body to the right. The
hands are placed on the abdominal region.

Assistant: Description A best matches the pose in the image.

(a) Text-to-Pose Selection (b) Pose-to-Text Selection

Fig. 9: Examples of the instruction-following data for discriminating pose generation
and pose description results.

– Pose Estimation Results Discrimination. To teach the LLM-based
model to discriminate the pose estimation results from different tools, we
build 17K pairs of instruction-following data based on the 3DPW [38] and
MOYO [61] training sets. Specifically, we use HMR 2.0 [15] and CLIFF-
SMPLify [2,29] to predict the human mesh and calculate the reconstruction
error between the predicted mesh and ground truth mesh. Based on MPVPE,
we determine which tool is better for each image and construct instruction-
following data as shown in Figure 8. Pose visualization results are rendered
with Pyrender [39].

– Pose Generation Results Discrimination. The human pose generation
tool, PoseScript [7], has multiple outcomes for each text input. Here we con-
struct 44K pairs of instruction-following data to teach the multimodal LLM-
based model to discriminate the multiple pose generation results. Specifically,
we use PoseScript training data as the source and construct the data in two
formats. The first one is about text-to-pose selection, as shown in Figure
9(a). Given a textual description, we visualize the corresponding pose and
three other different poses from the training data and ask the agent to dis-
criminate and choose the one that best aligns with the textual description.
The second one is about pose-to-text matching, as shown in Figure 9(b).
Given a 3D pose, we visualize it as an image by rendering the 3D body mesh
in that pose. Then, we combine it with the corresponding text description
and three other pose descriptions in the format of a multiple choice ques-
tion. Finally, we ask the agent to choose the one that best describes the pose
shown in the image.

– Human Contact Detection Results Integration. The outcome of the
human contact prediction tool, DECO [60], is a vertex-wise contact predic-
tion in a vector representation yc ∈ R6890×1, which can not be directly used
as input for our multimodal LLM baseline, LLaVA. To solve this problem,
we transform the vertex-wise contact label of ground-truth and DECO’s
result into a textual description based on the vertex-to-part mapping dictio-
nary of the SMPL model [36]. Subsequently, we feed the textual descriptions
along with the RGB image from the DECO training set [60] into GPT-4V
and prompt GPT4 [41] to generate instruction-following data about human-
object interaction as shown in Figure 10. Notably, the transformed tool result
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Human: Please describe the interaction between
the person and any objects in as much detail as
possible. The contact region detected by DECO
are: right hand, left foot, right foot. Notably,
the provided contact regions might not be
complete and you should detect all the contact
regions by yourself.
Assistant: The person is holding a tennis racket
with his right hand, and his stance indicates that
he may be in the action of swinging at a tennis
ball. Both feet are planted on the ground,
providing stability for the action he is performing.

Human: Are both feet of the person
touching the ground or any object?
The contact region detected by DECO
are: right upper leg, left foot, back,
right foot, left hand, right hand, left
upper leg, hips. Notably, the provided
contact regions might not be
complete and you should detect all
the contact regions by yourself.
Assistant: Yes, both the left and the
right feet of the person are touching
the ground.

Fig. 10: Instruction-following data about integrating results from human contact de-
tection. The contact labels detected by DECO [60] are combined with the user query.

Human: what would be the appropriate
clothes size for this person? Clues from
tool: height: 1.65 m, weight: 65 kg, chest
circumference: 1.03 m, waist circumference:
0.87 m, hips circumference: 1.24 m. Please
note that these clues are provided as
references and may not be entirely
accurate.

Assistant:  I would recommend a clothes
size of L for the person.

Human: What is the body height and mass
of the person in the image? Clues from
tool: height: 1.82 m, weight: 80.2 kg,
chest circumference: 1.03 m, waist
circumference: 0.89 m, hips circumference:
1.01 m. Please note that these clues are
provided as references and may not be
entirely accurate.

Assistant: The person is about 1.98 m, 
87.3 kg.

Fig. 11: Instruction-following data for integrating results from human body estimation.
Measurements of the estimated body shape from BEDLAM-CLIFF [1] are added to
the user query as clues.

is merged with the user query as a clue. The details of the prompt are shown
in Table 17.

– Body Shape Measurement Integration. Similar to human contact pre-
diction, the outcome of the body shape measurement tool is the SMPL body
shape parameter β ∈ R10, which is also in a vector representation and can
not be used by the LLM directly. Thus, we first convert the shape param-
eter into measurements based on the shape-to-measurement module from
SHAPY [5] and represent it in a textual format. Subsequently, we feed the
body measurement description along with attribute labels from the SHAPY
training set into GPT-4 and prompt it to generate instruction-following data
about human body shape as shown in Figure 11. Similarly, we merge the
body measurement predicted by the tool with the user query as a clue. The
prompt for GPT-4 is detailed in Table 18.

A.4 Benchmark Details

Tool Usage Benchmark. To evaluate the tool usage accuracy of our method,
we construct a validation and test set. The validation set has 1000 samples with
the same tools as the training set, while the test set includes 689 samples related
to 3 tools unseen during training. Similar to the training data construction,
we feed a textual description of an image from the COCO validation set, a tool
description, and some examples summarized from the tool paper into GPT-4 and
prompt it to generate instruction-following data about tool usage. We use the
image description captioned by LLaVA [32] instead of the original image captions
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to ensure a difference between training and test sets. Finally, we manually check
the question-answering pairs to ensure the accuracy of the benchmark.
MixPose Benchmark. To validate whether the multimodal LLM-based agent
can discriminate the pose estimation results from different tools, we build a new
benchmark, MixPose. Considering that different tools excel in different scenarios,
a benchmark covering diverse scenarios and corner cases is needed. To construct
this benchmark, we selected 100 images featuring extreme camera angles from
the MoYo [61] test set, 100 full-body images from the 3DPW test set, and 100
images with significant truncation also from the 3DPW test set. This approach
ensures our benchmark includes typical in-the-wild images, shots taken from
extreme views, and images with heavy truncation. This diverse distribution al-
lows us to test whether the agent can accurately choose the right tool based on
sceneries of the image and the tool performance. To get the truncated images
from 3DPW, we resize the human bounding box by 2/3 and crop the human
image based on the rescaled human bounding box.

B Additional Ablation Studies

Paper Components. To improve the tool usage accuracy, we propose a paper-
based RAG mechanism. Here we conduct an ablation study to analyze the effects
of each component of the paper for instructing tool usage. The baseline model
is derived by removing the RAG operation and is trained with the instruction-
following data constructed based on the manually defined tool descriptions and
examples (T), without referring to paper content. We then add the tool de-
scriptions and examples summarized from different paper components into the
prompt and request GPT-4 to generate new instruction-following data. The pa-
per components include the abstract (A), introduction (I), related work (R),
method (M), and experiment section (E). The results are presented in Table 10.
As shown, incorporating the paper content consistently improves the accuracy
of tool usage. Interestingly, feeding the abstract and introduction of the paper
achieves the best performance, and adding additional paper components like the
experiments does not result in further improvement. This is expected since the
abstract and introduction have covered the tool function and potential applica-
tions in most cases. We also find that examples generated based on paper content
can be noisy in some cases, and thus we manually check the examples and re-
move the incorrect samples before feeding them to GPT-4. This data cleaning
operation improves the accuracy.
Base Model for Value Extraction. During our body shape measurement and
human contact detection experiments, the answer of ChatHuman is a sentence
and thus could not be directly used to compute the evaluation metrics. Thus, we
need to prompt an LLM to extract the value from the sentence and compare the
extracted value with the ground truth label to calculate the metric. The prompts
for body shape measurement and contact estimation are shown in Table 13. Here
we use two different LLM models for value extraction and report the results in
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Paper Seen Tools Unseen Tools
T A I R M E C SRt SRact SRargs SR IoU SRt SRact SRargs SR IoU
✓ ✓ 1.0 0.97 0.93 0.96 0.96 0.95 0.89 0.78 0.82 0.87
✓ ✓ 1.0 0.97 0.95 0.97 0.97 0.99 0.94 0.85 0.90 0.93
✓ ✓ ✓ 1.0 0.97 0.95 0.97 0.97 1.0 0.97 0.86 0.91 0.94
✓ ✓ ✓ ✓ 1.0 0.98 0.95 0.97 0.97 1.0 0.97 0.84 0.91 0.93
✓ ✓ ✓ ✓ ✓ 1.0 0.98 0.94 0.97 0.97 0.99 0.95 0.82 0.87 0.92
✓ ✓ ✓ ✓ ✓ ✓ 1.0 0.98 0.95 0.97 0.97 1.0 0.96 0.86 0.91 0.94
✓ ✓ ✓ ✓ 1.0 0.97 0.95 0.97 0.98 1.0 0.97 0.89 0.95 0.95

Table 10: Ablation study on the impact of each paper component in the paper-based
RAG mechanism. T denotes tool description, A, I, R, M, E are abstract, introduction,
related work, method, experiment section from the paper, and C denotes the data
after manually cleaning. Successful rate of thought (SRt), action (SRact), arguments
(SRargs), execution (SR), and IoU are reported.

Evaluator Precision ↑ Recall ↑ F1 Score ↑
GPT-3.5 0.67 0.67 0.63
GPT-4 0.69 0.69 0.64

(a) HOI Contact Detection.

Evaluator Height ↓ Weight ↓ Chest ↓ Waist ↓ Hip ↓
GPT-3.5 6.7 10.4 6.1 13.0 6.4
GPT-4 6.7 10.4 6.1 13.0 6.4

(b) Body Shape Measurement.
Table 11: Ablation study on the base model for value extraction.

Table 11. As shown, the choice of the LLM model for value extraction does not
introduce a significant difference.
Text Embedding Model in Retrieval. During the paper-based retrieval
mechanism, we retrieve a relevant example by matching the text embedding
of the query and those within the tool documents using a pretrained text em-
bedding model [54]. Here we conduct an ablation study of the text embedding
model to analyze the robustness of our RAG mechanism. We experiment with
two models, i.e., instructor-xl and instructor-base. As shown in Table 12, the
performance of our method is not greatly affected by the text embedding model,
which demonstrates the robustness of ChatHuman.
Tool Use in Multi-turn Dialogue. In many real-world scenarios, the models
need to correctly use the tool based on the context within a multi-turn dialogue.
Here, we build a benchmark to evaluate the tool use accuracy within multi-turn
conversations. We randomly select several single-turn question-answer pairs from
the original multi-turn tool use benchmark and ask GPT-4 to merge them into
a multi-turn dialogue. We then evaluate the performance of GPT4Tools [68],
Visual ChatGPT [49], and ChatHuman on the built benchmark, which contains
1000 instruction-response pairs. As shown in Table 14, ChatHuman achieve a
superior performance in the multi-turn setting, demonstrating its capacity to
understand the comprehensive context information within the multi-turn dia-
logue and correctly use the tool to solve the problems.

C More Results

Motion-related Tools. We also integreta motion tools for tasks related to
human motions like text-to-motion generation. Specifically, we utilize TMR [44]
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Seen Tools Unseen Tools
Method SRt SRact SRargs SR IoU SRt SRact SRargs SR IoU

instructor-base 1.000 0.975 0.947 0.972 0.974 0.997 0.950 0.884 0.949 0.949
instructor-xl 1.000 0.974 0.950 0.970 0.975 0.999 0.967 0.893 0.954 0.953

Table 12: Ablation study of text embedding model for RAG. Successful rate of thought
(SRt), action (SRact), arguments (SRargs), execution (SR), and IoU are reported.

(a) You are an AI assistant. Your input will be a description of body measure-
ments, including height, weight, chest circumference, hip chest circumference,
and waist circumference. Your task is to extract the value of each attribute and
return a result like:
“height: 1 m, weight: 1 kg, chest circumference: 1 m, waist circumference: 1 m,
hip circumference: 1 m”
If there is no measurement value, return “There is no measurement value.”

(b) You are an AI assistant. Your input will be a description of the human-
object interaction information of a person. Your task is to extract the body
parts that contact with objects and return a list. Consider the following possible
body parts: right hand, right upper leg, left arm, left leg, left foot, back, left
shoulder, right shoulder, right foot, head, right arm, left hand, right leg, left
forearm, right forearm, neck, left upper leg, hips.

Table 13: Prompt to extract the target values from a sentence generated by ChatHuman
for metric computation. Prompt (a) is used to request GPT-3.5 for body measurement
values. Prompt (b) instructs GPT-3.5 to extract the body part names.

What would a man look like if
he was sitting on the ground?

Please help me create a video 
of a dog running.

(a) Vague user request. (b) Unsupported tasks. 

Fig. 12: Failure cases of ChatHuman. When the user inputs a vague query or requests
a task that could not be finished by current tools, ChatHuman might fail.

I’m looking to animate a character kicking a
football. Can you assist me with creating the
motion?

Certainly, here is the animation of
the character kicking a football.

I want to lose my weight, could you please
recommed an exercise for me?

To lose weight, I would recommend jumping jacks.

Can you generate a motion of this exercise?

Sure, here is the motion of jumping jacks.

Fig. 13: Text-to-motion generation examples.

to generate 3D human motions from text input. Figure 13 shows two examples
about synthesizing human motion from a textual description.
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SRargs SR IoU SRt SRact

GPT4Tools [67] 0.582 0.551 0.553 0.513 0.612

Visual ChatGPT-3.5 [49] 0.438 0.203 0.162 0.173 0.691

Visual ChatGPT-4 [49] 0.860 0.794 0.711 0.744 0.789

ChatHuman 1.000 0.959 0.927 0.955 0.962

Table 14: Comparison of tool usage accuracy within multi-turn dialogue. Successful
rate of thought (SRt), action (SRact), arguments (SRargs), execution (SR), and IoU are
reported.

Failure Cases and Limitations. There are mainly two kinds of failure cases
of ChatHuman. Firstly, ChatHuman may fail in certain calling scenarios, par-
ticularly when the user request is vague, as also shown in Figure 7 in the main
paper. Secondly, when the user query requires a task (e.g., video generation) that
is not supported by the tools in the tool libraries, ChatHuman might incorrectly
choose a tool to generate a response, instead of informing the user that the task
cannot be completed and recommending the creation or introduction of a new
tool. As shown in Figure 12(b), there is a need for tools for video generation.
Future developments may include expanding to tools related to these scenarios.
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You are an AI visual assistant tasked with analyzing a paper on a method in the
field of 3D human modeling. Your goal is to extract key information about the
method—its name, purpose, uses, and potential application scenarios. Based on
this, you need to succinctly define the method in the following formats “Method
name is a tool to do something. Useful when you want to do something. Like:
user query.”

Subsequently, craft 50 diverse, realistic user prompts that indirectly pertain to
using this method. These queries should be framed as questions, demands, or
scenarios from consumers who are unaware of the method’s name but whose
needs align with its capabilities. Assume that consumers have an image and
seek assistance in achieving a task related to the image using this method.
Each prompt should introduce the task of the user in an imperative tone. The
prompt should specify and refer to the image.

Here is one example:

Method definition:
name=“HMR2.”,
description=“HMR2.0 is a tool to estimate the 3D pose and shape of the person
in the image. Useful when you want to detect poses of the humans in the image.
Like: estimate the human poses in the image.”

Possible queries:
1. Can you help me estimate the pose of the person in the photo?
2. Please reconstruct a 3D avatar for the person in the image.
3. Could you please estimate the SMPL parameter of the man in the picture?
4. Someone in the image is riding a bicycle, could you please help me estimate
her pose?

Table 15: Prompt to request GPT-4 to summarize paper content, rearticulate tool
functions, and enumerate possible user queries for tool activation.



ChatHuman 29

Given an image whose image path is “example.jpg”. Image caption: “{caption}”.
The image caption includes detail image description and each object paired with
the bounding box [x1, y1, x2, y2]. For the bounding box, (x1, y1) refers to the
top left, and (x2, y2) refers to the bottom right. x1 less than x2, and y1 less
than y2.

Below are 22 visual tools. Each tool is defined as “tool name: usage scenario,
and tool arguments”.

Please generate 3 visual instructions for each tool, so you need to generate 66
visual instructions in total.
The generated instructions should follow the format of “instruction content,
[tool name, tool arguments]”. Each instruction must relate to the caption and
can be solved by the tool.
You can not revise the “tool name”, or add any other fake tools that is not
defined. You must keep the correct “tool arguments”.

Tools: {tool description}

Note that your generated visual instructions should be highly related to the
image caption. Directly reply to me with the list, here are some examples:
{examples}

Diversify the instructions to cover a wide range of possible user queries. Feel
free to adapt and rephrase the examples provided to generate diverse, complex,
and deceptive instructions as much as possible.
For example, you can also change the subject position or the person and pose
description positions. Don’t use too much imperative sentence, you should also
use interrogative sentence.

Table 16: Prompt to request GPT-4 to generate instruction-following data about tool
usage based on the image description, tool description, and tool usage examples sum-
marized from tool paper.
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You are an AI visual assistant, and you are seeing a single image and a sen-
tence about the human-object contact regions of the person in the image. The
sentence include the human-object contact body parts of the person. Notably,
the provided contact regions might not be complete and you should detect all
the contact regions by yourself.

Design a conversation between you and a person asking about the human-
object contact information of the person. The answers should be in a tone
that a visual AI assistant is seeing the image and answering the question. Ask
diverse questions and give corresponding answers.

Include questions asking about the person’s human-object contact information,
etc. Only include questions that have definite answers: (1) one can see the
content in the image that the question asks about and can answer confidently;
(2) one can determine confidently from the image that it is not in the image.
Do not ask any questions that cannot be answered confidently.

Provide detailed answers when answering complex questions. In your answer,
you should imitate as if you see the image and the contact regions are estimated
by you. You should only ask questions about the human-object interaction. The
answer should be as detailed as possible. Don’t mention any other irrelevant
information! Directly reply to me with a list, here are some examples:
1. Please help me detect the contact regions of the person in the image. [The
person’s contact region includes his feet, hands, and back. His feet touch the
ground and his hands are holding a mobile phone.]
2. Does the person’s hand contact any objects? [Yes, her right hand holds an
umbrella.]
3. Describe the human-object interaction information of the person, as detailed
as possible. [The person holds a phone with his left hand and stands on a
skateboard with both their left and right feet.]

Notably, at least one question is to ask all the contact regions of the person. In
your answer, you should distinguish and specify the left and right body parts.
Notably, you should distinguish based on the body pose and orientation. If the
person is facing the camera, the hand, foot, and ear on the left side of the
image is the person’s right hand, right foot, and right ear, and the one on the
right side of the image is the person’s left hand, left foot, and left ear. If the
person has their back to the camera, the one on the left side of the image is
the person’s left body part, and the one on the right side of the image is the
person’s right body part.

Table 17: Prompt to request GPT-4V to generate instruction-following data about
human-object interaction based on the textual contact description and RGB image.
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You are an AI visual assistant, and you are seeing a single image. What you
see are provided with a sentence, describing the body shape of the person in
the image. Answer all questions as you are seeing the image.

The sentence includes information about the person’s gender, body mass,
height, chest circumference, waist circumference, and hip circumference. Be-
sides, it includes 15 linguistic shape attributes scale from 1 (strongly disagree)
to 5 (strongly agree).
Design a conversation between you and a person asking about the body shape
of the person. The answers should be in a tone that a visual AI assistant is
seeing the image and answering the question.
Ask diverse questions and give corresponding answers.

Include questions asking about the visual content of the image, including the
person’s overall body fit, shape, height, mass, etc. Only include questions that
have definite answers:
(1) one can see the content in the image that the question asks about and can
answer confidently;
(2) one can determine confidently from the image that it is not in the image.
Do not ask any questions that cannot be answered confidently.

Provide detailed answers when answering complex questions. When the ques-
tion is about the measurement, provide an explicit and concrete metric number
in the answer.
In your answer, you should imitate as if you see the image and the measure-
ments and linguistic attributes are estimated by you. The linguistic attribute
score is only used to help you understand and don’t mention it in your answer.

Directly reply to me with a list, here are some examples:
1. How tall is the person in the image? [The person looks quite tall. He is about
1.85 m.]
2. Please help me estimate the body measurements of the man in the image.
[The man is about 1.74 m and 60 kg. His chest circumference is about 0.9 m.]
3. What’s the waist circumference of the person? [The chest circumference is
about 0.95 m.]

Table 18: Prompt to request GPT-4 to generate instruction-following data about human
body shape based on the textual description about human body.


